重庆时时彩开奖号码-重庆时时彩官方网站 tt娱乐_百家乐乐赌_新全讯网之一(中国)·官方网站

理學(xué)院學(xué)術(shù)報(bào)告——Fractional (α,p)-Laplacian Equations Driven by Superlinear Noise on R^d: Global

作者:來源:西華大學(xué)發(fā)布時間:2024-11-13瀏覽次數(shù):153

報(bào)告題目: Fractional (α,p)-Laplacian Equations Driven by Superlinear Noise on R^d: Global Solvability and Invariant Measures

報(bào)告人: 王仁海 教授(貴州師范大學(xué))

報(bào)告時間20241113日(周三)19:30-20:30

報(bào)告地點(diǎn):2B-409


報(bào)告摘要:We consider a wide class of fractional (α,p)-Laplacian equations on R^d driven by infinite-dimensional superlinear noise. The model has three striking features: a general fractional (α,p)-Laplace operator defined via a symmetric and translation invariant kernel function K^α_p with α  (0,1) and p > 2; a polynomial drift growing at an arbitrary rate q ?1 with q > 2; and a locally Lipschitz diffusion term with superlinear growth. By using a locally monotone method and a domain approximation argument, we first establish the global-in-time well-posedness and the higher-order It?’s energy equations when the diffusion term has a superlinear growth rate less than p/2 or q/2. We then prove the existence and derive the moment estimates of invariant measures of the equation under further assumptions on the superlinear diffusion terms. When the damping coefficient is suitably large, we show the unique-ness, ergodicity as well as the Wasserstein exponential mixing of invariant measures without adding any additional conditions on the superlinear noise.The idea of uniform tail-estimates is used to overcome the difficulties caused by the lack of compactness of Sobolev embeddings on unbounded domains. The dissipativeness of the drift terms and some appropriate stopping times are used to carefully deal with the superlinear diffusion terms. The analysis has no any restrictions on α  (0,1), d  N, p > 2 or q > 2.

This is a joint work with Professors Bixiang Wang and Penyu Chen.

 

報(bào)告人簡介:

王仁海貴州師范大學(xué)校聘教授,博士生導(dǎo)師,西南大學(xué)與美國New Mexico Institute of Mining and Technology的聯(lián)合培養(yǎng)博士,北京應(yīng)用物理與計(jì)算數(shù)學(xué)研究所博士后,長期從事無窮維隨機(jī)動力系統(tǒng)與隨機(jī)偏微分方程的研究。主持國家自然科學(xué)基金青年基金,中國博士后科學(xué)基金特別資助和面上資助,獲重慶市優(yōu)秀博士學(xué)位論文,其論文發(fā)表于在Mathematische Annalen, Mathematical Models and Methods in Applied Sciences, SIAM J. Math. Anal., Science China Mathematics, Journal of Differential Equations, Journal of Dynamics and Differential Equations, Nonlinearity, Stochastic Processes and Their Applications等刊物。


責(zé)編:

編審:程訪然

維護(hù):西華大學(xué)·網(wǎng)管中心 蜀ICP備05006459號-1

川公網(wǎng)安備 51010602000503號

威尼斯人娱乐网反水| 至尊百家乐官网2014| 波音百家乐网上娱乐| 百家乐官网稳赢秘笈| 百家乐官网网络投注| 澳博线上娱乐| 百家乐微乐| 缅甸百家乐娱乐场开户注册| 百家乐专家赢钱打法| 易胜博百家乐娱乐城| 新濠百家乐的玩法技巧和规则| 百家乐2号破解下载| 圣保罗百家乐的玩法技巧和规则| 威尼斯人娱乐场cqsscgw88| 百家乐刷钱| 新葡京娱乐城官网| 大发888官方6222| 博九娱乐城| 玩百家乐官网输澳门百家乐官网现场 | 宕昌县| 百家乐官网单机游戏免费下| 百家乐怎么看大小| 24 山杨公斗首择日吉凶| 百家乐的玩法视频| 威尼斯人娱乐 老品牌| 娱网棋牌下载| 老牌现金网| 百家乐官网如何洗吗| 百家乐官网破解策略| 百家乐官网筹码皇冠| 励骏会百家乐的玩法技巧和规则| 皇冠体育网| 百家乐官网加牌规则| 百家乐官网的珠盘| 百家乐博乐36bol在线| 大发888手机版客户端| 澳门百家乐官网搏牌规则| 正品百家乐官网的玩法技巧和规则 | 乐九百家乐官网现金网| 百家乐官网娱乐礼金| 百家乐筹码托盘|