報(bào)告題目:Quantitative convergence of ergodic averages associated with group actions on a fixed noncommutative L^p space
報(bào) 告 人:劉偉
報(bào)告時(shí)間:2024年4月26日,15:00-17:00
報(bào)告地點(diǎn):4A305
主辦單位:西華大學(xué)理學(xué)院
報(bào)告人簡介:劉偉,理學(xué)博士,現(xiàn)為西南財(cái)經(jīng)大學(xué)數(shù)學(xué)學(xué)院講師。研究方向?yàn)橄蛄恐岛头墙粨Q分析,遍歷理論?,F(xiàn)已在向量值調(diào)和分析,經(jīng)典和非交換遍歷理論領(lǐng)域上取得了相關(guān)的工作進(jìn)展,部分工作已發(fā)表在 J. Funct. Anal.數(shù)學(xué)期刊上。
內(nèi)容簡介:In this talk, we will introduce our recent works about quantitative convergence of ergodic averages associated with polynomial volume growth group actions on a fixed noncommutative L^p-space. To achieve our goal, we consider the operator-valued square function inequalities for ball averages on a metric space with non-doubling measure. The latter's establishment involves several new ingredients such as the operator-valued Calder\'on-Zygmund theory for non-doubling measure, BMO theory and some delicate geometric arguments. This is a joint work with Guixiang Hong and Bang Xu.

川公網(wǎng)安備 51010602000503號(hào)