報(bào)告題目:Degenerate T-singularity bifurcation in 3D switching systems
報(bào) 告 人:陳興武
報(bào)告時(shí)間:2023年12月5日10:30—12:00
報(bào)告地點(diǎn):2B-409
報(bào)告摘要:We talk about the bifurcation of degenerate T-singularity on the switching manifold for 3-dimentional switching systems. When a condition required in previous publications is not satisfied, a further non-degenerate condition determined by terms no more than degree two of perturbation is constructed, under which we obtain the pseudo-equilibrium bifurcation curve besides previous two bifurcation curves. Moreover, we prove that there exist either one family or two families of non-isolated crossing periodic orbits or at most two crossing periodic orbits and it is reachable. Corresponding necessary and sufficient conditions are given as well as periods and locations of these crossing periodic orbits.
報(bào)告人簡介:陳興武,2007年獲四川大學(xué)理學(xué)博士學(xué)位,現(xiàn)任四川大學(xué)數(shù)學(xué)學(xué)院教授、博導(dǎo),國家級(jí)一流線下課程《常微分方程》負(fù)責(zé)人,美國《數(shù)學(xué)評(píng)論》、歐洲《數(shù)學(xué)文摘》評(píng)論員。主要從事微分系統(tǒng)定性和分岔的理論及應(yīng)用研究,在該研究方向的主流國際學(xué)術(shù)期刊Nonlinearity, JDE, SIMA, DCDS等發(fā)表一系列學(xué)術(shù)論文,部分成果獲教育部自然科學(xué)一等獎(jiǎng);主持多項(xiàng)國家自然科學(xué)基金面上項(xiàng)目、青年項(xiàng)目,科技部政府間合作交流項(xiàng)目,并參與科技部國家重點(diǎn)研發(fā)項(xiàng)目;曾應(yīng)邀赴美國明尼蘇達(dá)大學(xué)、西班牙巴塞羅那自治大學(xué)等學(xué)術(shù)機(jī)構(gòu)交流訪問

川公網(wǎng)安備 51010602000503號(hào)