重庆时时彩开奖号码-重庆时时彩官方网站 tt娱乐_百家乐乐赌_新全讯网之一(中国)·官方网站

理學(xué)院學(xué)術(shù)報(bào)告—Invariant manifolds for a randomly perturbed non-autonomous coupled system and their approximations

作者:理學(xué)院來(lái)源:西華大學(xué)發(fā)布時(shí)間:2023-11-27瀏覽次數(shù):200

報(bào)告題目:Invariant manifolds for a randomly perturbed non-autonomous coupled system and their approximations

報(bào)  人:申俊

報(bào)告時(shí)間:202311291030—1200

報(bào)告地點(diǎn):2B-409


報(bào)告內(nèi)容 In this talk we consider long time dynamics of a randomly perturbed non-autonomous coupled system , whose  coordinate satisfies a semilinear parabolic equation with an additive noise, and  coordinate satisfies a differential equation whose solutions do not converge too rapidly. The noise is either the white noise induced by a Brownian motion  or a stationary process whose integral is approximating . After addressing certain assumptions for such system, we show that for (resp. ) with respect to the noise  (resp. integral of  there exists a invariant manifold which is exponentially attracting any other solution outside it. Also, as  tends to 0, the invariant manifold and its derivative in  for the case  are approaching to those for .

 

報(bào)告人簡(jiǎn)介:申俊,四川大學(xué)副教授,博士生導(dǎo)師四川省學(xué)術(shù)和技術(shù)帶頭人后備人選;曾在英國(guó)倫敦帝國(guó)理工學(xué)院、美國(guó)楊百翰大學(xué)訪問(wèn);現(xiàn)主持國(guó)家自然科學(xué)基金面上項(xiàng)目1項(xiàng),參加國(guó)家重大、重點(diǎn)項(xiàng)目各1項(xiàng);在《Journal of Differential Equations》、《Journal of Dynamics and Differential Equations》、《Discrete and Continuous Dynamical Systems-Series A》、《SCIENCE CHINA Mathematics》、《Physica D》等上面發(fā)表文章數(shù)篇。


責(zé)編:

編審:程訪然

維護(hù):西華大學(xué)·網(wǎng)管中心 蜀ICP備05006459號(hào)-1

川公網(wǎng)安備 51010602000503號(hào)

百家乐代理| 百家乐一代龙虎机| 百家百家乐官网官网网站| 网上百家乐官网哪家较安全| 新天地百家乐的玩法技巧和规则| 百家乐制胜法| 百家乐官网天下第一缆| 百家乐台布21点| 怀集县| 百家乐怎么看门路| 皇冠足球网| 塑料百家乐筹码| 女神国际娱乐城| 百家乐的保单打法| 百家乐园选百利宫| 太阳会百家乐官网现金网| 沙龙百家乐赌场娱乐网规则| 百家乐官网视频游戏注册| 百家乐和怎么算输赢| 百家乐官网平台信誉| 全讯网百导| 云鼎百家乐官网的玩法技巧和规则| 明升88| 百家乐的桌子| 广州百家乐官网酒店用品制造有限公司| 水果老虎机的程序| 百家乐太阳城开户| 百家乐官网注册彩金| bet365最新地址| 百家乐怎么打啊| 百家乐官网视频对对碰| 大发888游戏技巧| 百家乐庄闲的概率| 全讯网网址导航| 百家乐游戏试玩免费| 平顶山市| 百家乐赌博策略论坛| 百家乐官网电投网址| 大发888下载17| 娱乐城百家乐高手| 百家乐官网现场新全讯网|